skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hairston, Marc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract During the second recovery phase of the 13–14 March 2022 storm, intense high‐latitude neutral mass density spikes are detected by satellites at ∼500 km in both hemispheres. These density spikes, accurately modeled by the Global Ionospheric Thermosphere Model (GITM), are identified as high‐latitude neutral mass density anomalies (HDAs). The GITM simulation indicates that these HDAs, which extends over the polar region, are important features in high‐latitude neutral density. Furthermore, GITM reveals that these HDAs are manifestations of transpolar traveling atmospheric disturbances triggered on the dawn side. Moreover, GITM also reveals significant interhemispheric asymmetries (IHAs) in the magnitude, propagation speed, and propagation direction of HDAs, which are linked to the IHAs in the distribution and magnitude of Joule heating deposited as well as the thermospheric background conditions. This study presents a dynamic perspective on the IHA of storm‐time high‐latitude neutral density variations that is particularly helpful to the proper interpretation of satellite observations. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Key Points Enhancement of field‐aligned warm ions observed in the plasma sheet was energy‐dispersive with increasing energy from 20 eV to >100 eV The probe at larger r observed the energy‐dispersive enhancements 20 min earlier than did the probe at smaller r The enhancements were likely caused by enhanced convection and the dispersion was likely due to acceleration by field‐aligned potential 
    more » « less
  3. Inter-hemispheric asymmetry (IHA) in Earth’s ionosphere–thermosphere (IT) system can be associated with high-latitude forcing that intensifies during storm time, e.g., ion convection, auroral electron precipitation, and energy deposition, but a comprehensive understanding of the pathways that generate IHA in the IT is lacking. Numerical simulations can help address this issue, but accurate specification of high-latitude forcing is needed. In this study, we utilize the Active Magnetosphere and Planetary Electrodynamics Response Experiment-revised fieldaligned currents (FACs) to specify the high-latitude electric potential in the Global Ionosphere and Thermosphere Model (GITM) during the October 8–9, 2012, storm. Our result illustrates the advantages of the FAC-driven technique in capturing high-latitude ion drift, ion convection equatorial boundary, and the storm-time neutral density response observed by satellite. First, it is found that the cross-polar-cap potential, hemispheric power, and ion convection distribution can be highly asymmetric between two hemispheres with a clear Bydependence in the convection equatorial boundary. Comparison with simulation based on mirror precipitation suggests that the convection distribution is more sensitive to FAC, while its intensity also depends on the ionospheric conductance-related precipitation. Second, the IHA in the neutral density response closely follows the IHA in the total Joule heating dissipation with a time delay. Stronger Joule heating deposited associated with greater high-latitude electric potential in the southern hemisphere during the focus period generates more neutral density as well, which provides some evidences that the high-latitude forcing could become the dominant factor to IHAs in the thermosphere when near the equinox. Our study improves the understanding of storm-time IHA in high-latitude forcing and the IT system. 
    more » « less
  4. Abstract The space hurricane is a polar cap auroral structure with strong flow shears and intense particle precipitation that can disturb the thermosphere under quiet geomagnetic conditions. Here the statistical characteristics of this interaction are surveyed using data from the Defense Meteorological Satellite Program and Gravity Field and Steady‐State Ocean Circulation Explorer satellites. The results confirm that space hurricanes modify the ion and neutral circulation in the polar cap through enhanced electric fields. Local precipitation, particularly >500 eV electrons, which raises the Pedersen conductance, leads to enhanced Joule heating and the generation of gravity waves. Electric fields play a leading role on the dawn side of the space hurricane. Gravity waves are also mainly located on the dawnside of the space hurricane, with a maximum vertical wind of 37 m/s and a 17% neutral density disturbance. These findings augment our awareness of magnetosphere‐polar ionosphere‐thermosphere coupling under quiet northward IMF conditions. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  5. Abstract The impacts of solar eclipses on the ionosphere‐thermosphere system particularly the composition, density, and transport are studied using numerical simulation and subsequent model‐data comparison. We introduce a newly developed model of a solar eclipse mask (shadow) at extreme ultraviolet (EUV) wavelengths—PyEclipse—that computes the corresponding shadowing as a function of space, time, and wavelength of the input solar image. The current model includes interfaces for Solar Dynamics Observatory and Geostationary Operational Environmental Satellites EUV telescopes providing solar images at nine different wavelengths. We show the significance of the EUV eclipse shadow spatial variability and that it varies significantly with wavelength owing to the highly variable solar coronal emissions. We demonstrate geometrical differences between the EUV eclipse shadow compared to a geometrically symmetric simplification revealing changes in occultation vary ±20%. The EUV eclipse mask is validated with in situ solar flux measurements by the PRoject for Onboard Autonomy 2/Large Yield Radiometer instrument suite showing the model captures the morphology and amplitudes of transient variability while the modeled gradients are slower. The effects of spatially EUV eclipse masks are investigated with Global Ionosphere Thermosphere Model for the 21 August 2017 eclipse. The results reveal that the modeled EUV eclipse mask, in comparison with the geometrically symmetric approximation, causes changes in the Total Electron Content in order of ±20%, 5%–20% in F‐region plasma drift, and 20%–30% in F‐region neutral winds. 
    more » « less